
Artificial atom concept and its impact in the chemistry of materials

... many scaling laws for size-dependent properties:

band gap, melting temperature, charging energy...

Quantum Dot Labeling for Biological Imaging

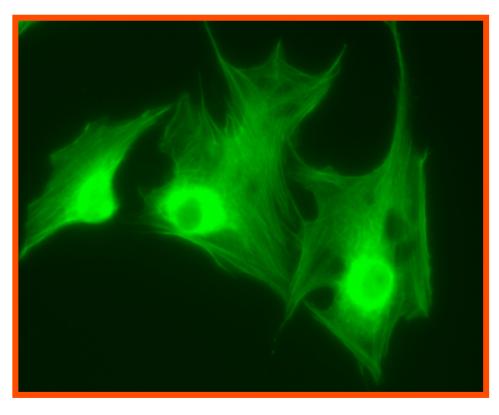
Bruchez, M.; Moronne, M.; Gin, P.; Weiss, S.; Alivisatos, A. P., Science 1998, 281, 2013-2016.

Chan, W. C. W.; Nie, S. M., Science 1998, 281, 2016-2018.

Alexa 488

Green QDs

Courtesy Quantum Dot Corporation, now Invitrogen


Alexa 488 Green QDs

Courtesy Quantum Dot Corporation, now Invitrogen

Alexa 488

Green QDs

Courtesy Quantum Dot Corporation, now Invitrogen

Alexa 488

Green QDs

Courtesy Quantum Dot Corporation, now Invitrogen

Complexity of shape and composition in colloidal inorganic nanocrystals Symmetry, topology, connectivity, directionality... 100nm 50nm

Nanocrystal Molecules made inorganically

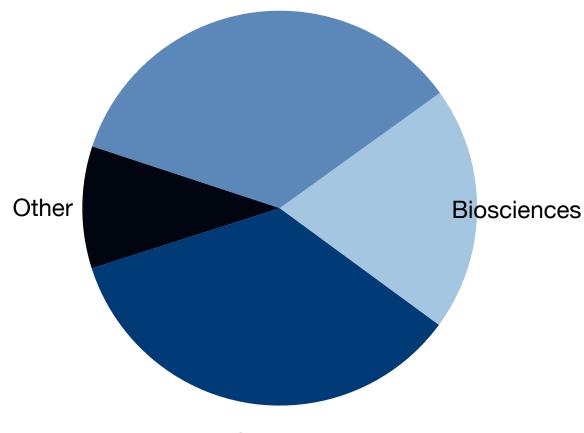
The National Lab with a Global Mission

Friday, July 17, 2009

Lawrence Berkeley National Laboratory 3,800 employees, ~\$660 M / year budget

11 employees were awarded the Nobel Prize,
(9 did their Nobel work at the Lab.)
(Over 55 Nobel Laureates either trained or had significant collaborations at LBNL)

3% of the members of National Academy of Sciences,
 18 in the National Academy of Engineering,
 2 in the Institute of Medicine


Today:

Evolution of the Berkeley Lab Budget: 1970s

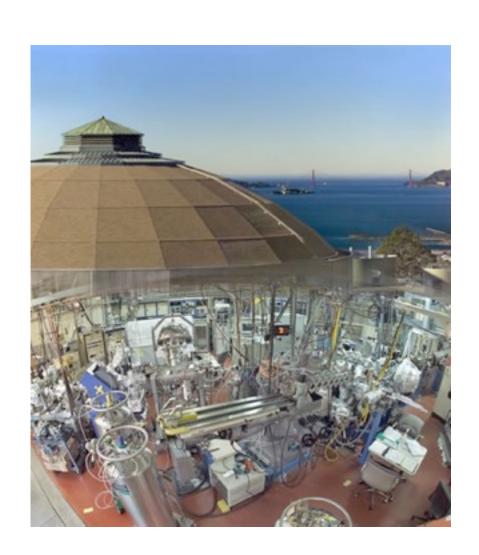
Evolution of the Berkeley Lab Budget: 1990s

Energy Sciences

Evolution of the Berkeley Lab Budget: Today

Berkeley Lab Today

- Engage the lab on the greatest scientific and technical challenges of our times
- Foster and harness the creativity of outstanding individuals
- Work collectively across disciplines and boundaries to find solutions
- Create and share unique tools for science
- Create innovative public-private partnerships to solve intractable problems
- This is the "Berkeley style" that created LBNL and put UCB on the world science map



JBEI & DOE's Bioenergy Research Centers: The Next Model for DOE Initiatives

JBEI & DOE's Bioenergy Research Centers: The Next Model for DOE Initiatives

JBEI: a single location

Building on JBEI: DOE's (Future) Advanced Biofuels Pilot Plant Facility

USER FACILITY FOR DOE BIOENERGY RESEARCH

- State-of-the-art scale-up facilities
- Translate research advances to commercial practice
- Provide quantitative information for design, construction and economic evaluation of new biofuels production processes
- Dedicated staffing and multi-year support
- •\$20M (EERE)

Capabilities for:

- Enzyme production
- Biomass pretreatment
- Biofuels production
- Separation & purification
- Analytical chemistry & biology

Building on JBEI: DOE's (Future) Advanced Biofuels Pilot Plant Facility

USER FACILITY FOR DOE BIOENERGY RESEARCH

- State-of-the-art scale-up facilities
- Translate research advances to commercial practice
- Provide quantitative information for design, construction and economic evaluation of new biofuels production processes
- Dedicated staffing and multi-year support
- •\$20M (EERE)

Capabilities for:

- Enzyme production
- Biomass pretreatment
- Biofuels production
- Separation & purification
- Analytical chemistry & biology

Biofuels model for research at LBNL: from basic to applied

Berkeley Lab's Priority Strategic Science Areas

Soft X-Ray Science

Energy and the Environment

 Life Sciences for Energy Research

Computational Science

High-Energy and Nuclear Physics

Soft X-Ray Science

- Advanced Light Source Renewal
 - Beamline renewal and upgrades
 - Accelerator renewal to increase brightness

Berkeley Laser Array for Science and Engineering

Research (BLASER)

Coherent soft x-ray laser

Reveal electron dynamics in reactions and materials

• Energy

- Energy-Efficient Buildings
- Carbon Capture & Sequestration
- Energy Storage
- Solar Fuels
- Fusion Research

- Climate Change Science
- Fusion and Nuclear Energy

Energy-Efficient Buildings

- Carbon Capture & Sequestration
- Energy Storage
- Solar Fuels
- Fusion Research

- Climate Change Science
- Fusion and Nuclear Energy

Per Capita Electricity in the U.S. and California (1960-2001)

Buildings Efficiency Hub

Research Areas:

- Integrating systems: lighting, windows, HVAC, envelope, and other components/sub-systems
- Integrating processes: design, build, deliver, operate
- Measure, track and optimize performance by integrating sensors, communication, modeling/computation, control, and visualization
- Large scale computational modeling is critical
- Integrate testing, validation and commercialization

Possible partnership with other labs, industries, and universities

• Energy

- Energy-Efficient Buildings
- Carbon Capture & Sequestration
- Energy Storage
- Solar Fuels
- Fusion Research

- Climate Change Science
- Fusion and Nuclear Energy

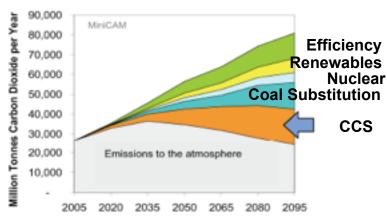
Energy-Efficient Buildings

- Carbon Capture & Sequestration
- Energy Storage
- Solar Fuels
- Fusion Research

- Climate Change Science
- Fusion and Nuclear Energy

Carbon Capture and Sequestration

- Carbon capture R&D: nanostructured membranes to remove CO₂ from flue gases or air: UCB EFRC
- Geological sequestration: integrated hydrological, geochemical, and geophysical R&D: LBNL EFRC
- Bio-enhanced sequestration through plant and microbial processes
- Possible collaboration with Stanford, PNNL, UT Austin...



• Energy

- Energy-Efficient Buildings
- Carbon Capture & Sequestration
- Energy Storage
- Solar Fuels
- Fusion Research

- Climate Change Science
- Fusion and Nuclear Energy

Energy-Efficient Buildings

Carbon Capture & Sequestration

Energy Storage

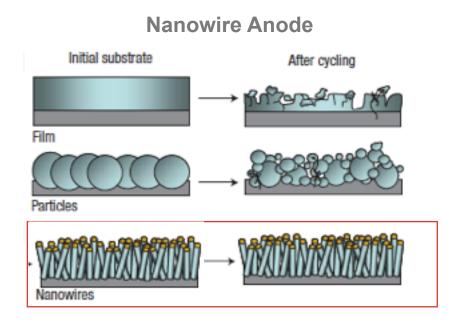
Solar Fuels

Fusion Research

- Climate Change Science
- Fusion and Nuclear Energy

Energy Storage

- Science and technology drivers
 - Far from efficiency limits
 - New chemistries and materials
- Possible collaboration with Argonne


- 3000 Theoretical

 3000 Li-ion Today

 0. Zn/air
- Nanotechnology-enabled anodes, cathodes, and transport media have the potential to revolutionize battery technology

Channels ~10 nm For ion conduction Hard matrix For mechanical support Dendrite (1 μm)

Block co-polymer Transport Media

• Energy

- Energy-Efficient Buildings
- Carbon Capture & Sequestration
- Energy Storage
- Solar Fuels
- Fusion Research

- Climate Change Science
- Fusion and Nuclear Energy

Energy-Efficient Buildings

Carbon Capture & Sequestration

Energy Storage

Solar Fuels

Fusion Research

- Climate Change Science
- Fusion and Nuclear Energy

Helios SERC: Three prototypes of artificial photosynthetic units

Fuels from Sunlight: Helios Research Institute

 A Partnership to accelerate the development and distribution of transportation fuel derived from carbon dioxide and water using chemistry powered by sunlight

• 2 Sites:

Northern California, near UCB-LBNL Southern California, near Caltech

Goals:

Low-cost and abundant materials optimized for light collection and product separation

Self-assembly processes for scalable manufacture

Catalysts for new energy storage chemistries

Life Sciences for Energy Research

low dose rad.

evolved and engineered photosynthesis

Friday, July 17, 2009

Infrastructure Projects Relevant to Life Sciences

Potter Street

Building 74 Seismic retrofit and renovation(2011)

SLI General Purpose Laboratory (2012)

Offsite Biocampus?

Extreme Scale Computational Science

 Energy-Efficient Computing at the Extreme Scale

Leadership Data Facility

 Terabit Networking for Distributed Science

 Mathematics and Modeling for Energy Challenges

Solar Technology Evolution

Solar Thermal:

Harness heat Steam engine ~25 meV

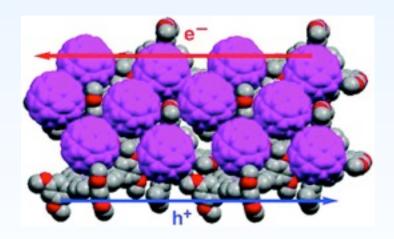
Single Gap Photovoltaic:

Silicon and Thin Film
~1eV
Photoelectric effect
Up to 24% efficiency
\$4-5/W

Multigap cells:

Semiconductor processing
Artificial materials
~Up to 40% efficiency \$350-1000s\$/W
Concentration?

Solar Fuel:


Artificial
Photosynthesis
Enabled by
nanomaterials

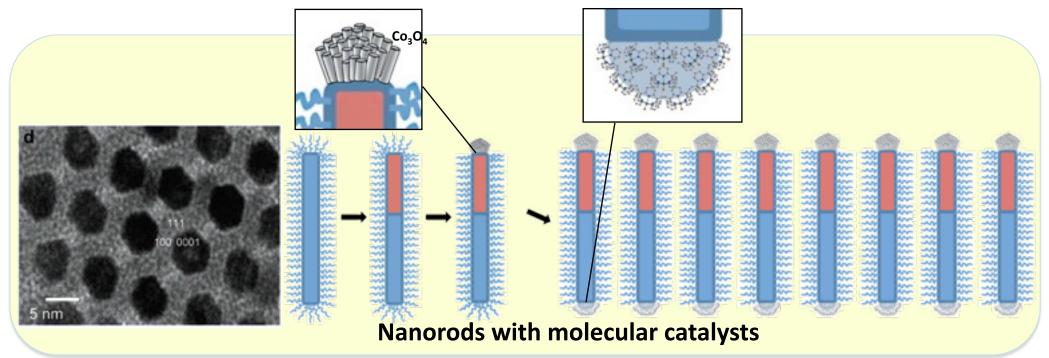
climbing the thermodynamic ladder

Some designs of nanotechnology enabled solar cells

Polymers/organic

Simultaneously must control:

- Light absorption
- Charge separation
- Charge transport/collection
- Use minimum amount of material
- •Really cheap, scalable process



Helios SERC: Three prototypes of integrated fuel generating systems under development BERKELEY LAB

High Energy and Nuclear Physics

- Dark Energy Research
 - Joint Dark Energy Mission
 - Boss and Big Boss
- Optical Accelerators
 - ARRA funding
- Nuclear Physics Frontiers
- Science enabled by the Deep Underground Science and

Friday, July 17, 2009

